
 

Journal of Computer Science and Engineering in Innovations and Research     

RAICCIT-2025                            Vol.-1, Issue- 2,  January - June 2025               ISSN: 3049-1762 (Online) 

 

Copyright @ JCSEIR 

 

51 

 

Identification Of Abnormal Eeg Using Deep Learning And Neural Networks  

Prof . Debasish Saha Roy , Syed Aman Ahamed , Tamal Putatunda , Tanuja Paul , Tirthak DebNath 

 

 

1. Department of CSE, MAKAUT (JIS COLLEGE OF ENGINEERING), Nadia, India (ORCID ID: https://orcid.org/0009-0004-1063-2906)  

2. Department of CSE, MAKAUT (JIS COLLEGE OF ENGINEERING), Nadia, India (ORCID ID: https://orcid.org/0009-0007-8130-4899)  

3. Department of CSE, MAKAUT (JIS COLLEGE OF ENGINEERING), Nadia, India (ORCID ID: https://orcid.org/0009-0005-0803-8980) 

4. Department of CSE, MAKAUT (JIS COLLEGE OF ENGINEERING), Nadia, India (ORCID ID: https://orcid.org/0009-0004-1063-2906)  

5. Department of CSE, MAKAUT (JIS COLLEGE OF ENGINEERING), Nadia, India (ORCID ID: https://orcid.org/0009-0003-5552-2607)  

Email Address: debasish.saharoy@jiscollege.ac.in(Debasish Saha Roy), amansxi02@gamil.com(Syed Aman Ahamed), 
tamalpututundu@gmail.com  (Tamal Putatunda), tanujapaul9900@gmail.com (Tanuja Paul), mrtirthakdebnath@gmail.com (Tirthak DebNath) 

Abstract : Epilepsy is a neurological condition resulting in seizures, identifiable through EEG examination. 

This work introduces software based on deep learning with the application of a CNN-GRU model for real-

time classification and seizure detection from a patient's EEG graph. The current system independently observes EEG 

signals, identifies abnormalities, and notifies caregivers, providing uninterrupted, high-fidelity classification without the 

need for human intervention. 

Keywords: Abnormal EEG Identification, Alert generation, EEG test, CNN (Convolutional Neural Network), Abnormality 

detection, Brain state.

I    INTRODUCTION  

Electroencephalography (EEG) is a standard 

neurophysiological monitoring technique applied for the 

measurement of brain electrical activity. EEG data 

classification is very important for diagnosing neurological 

illness, designing brain-computer interfaces (BCI), and 

cognitive state analysis. Traditionally, EEG classification 

methods employed primarily manual feature extraction; 

however, recent developments in advanced deep learning 

techniques such as Convolutional Neural Networks (CNNs) 

and Recurrent Neural Networks (RNNs) such as Gated 
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Recurrent Units (GRUs) have seen phenomenal leaps in 

terms of accuracy. Against the backdrop of increased EEG 

density and complexity, Artificial Intelligence (AI) has 

become the prime mover for the automation and 

enhancement of EEG analytical processes. AI-driven models 

facilitate fast, accurate, and scalable detection of 

neurological diseases, cost-effectiveness, and low reliance 

on clinician-level ratings. The incorporation of AI results in 

real-time seizure forecast integration, incorporation of 

anomaly scores, and extended monitoring, further enhancing 

patient quality of life in addition to personalized therapy 

methodologies. CNN-GRU integration combinations 

enhance spatial and temporal pattern detection, thus making 

AI-driven EEG analysis a revolutionary methodology in 

clinical as well as research applications. 

This study has a comprehensive literature review and an 

explicit step-by-step procedure for employing an EEG 

classification model. Although there has been advancement  

 

in EEG classification using EEG, the existing models are 

bound to be computationally inefficient, overfitting from 

limited data, and poor in representing spatial and temporal 

relationships. All these are addressed in this study with a 

hybrid CNN-GRU model that balances feature learning and 

sequential learning with optimal accuracy and efficiency. 

II   LITERATURE SURVEY  

Raw EEG signals consist of temporal recordings that may 

exhibit patterns and periodicities on a range of time scales. A 

technique that has been found efficient in separating time 

signals, like speech, is the application of recurrent neural 

networks (RNNs). We present a new and advanced recurrent 

unit called the Gated Recurrent Unit (GRU) which is 

extremely efficient in long-range correlations and 

dependencies in time-series data. After this, we present the 

idea of inception modules and densely connected neural 

networks—terminologies that are popular when talking 

about convolutional neural networks (CNNs). We apply both 

these ideas in EEG data analysis for combining patterns 

observed at many scales and eliminating vanishing gradient 

problems. For the calculation of the model's accuracy, we 

applied conventional approaches (LOGISTIC 

REGRESSION) and (CHRONONET). Logistic regression is 

primarily required to interpret manually, whereas in 

CHRONONET we utilize only the stacked GRU layers for 

improved efficiency, which makes the detection of 

abnormalities easier.  

[II.1] (A) EEG DATA PROCESSING  

EEG signals are captured by electrode placement systems 

like the 10-20 international system (Jasper, 1958). For our 

model, 14 EEG channels are employed, as in previous 

studies (Delorme & Makeig, 2004; Schirrmeister et al., 

2017). The BCI datasets are taken from BCI Competition IV: 

Download area. 

[II.2] (B) BANDPASS  FILTERING AND ARTIFACT 

REMOVAL  

EEG signals are susceptible to muscle movement artifacts, 

eye blinks, and external noise. Our model's 1-30 Hz 

bandpass filtering is under best practice for EEG 

preprocessing (Zhou et al., 2018; Lawhern et al., 2018). 

Filtered noise was effectively eliminated from studies at this 

frequency range without suppressing useful brain wave 

activity.  

[II.3] (C) EPOCHING AND STANDARDIZATION  

Our method employs fixed-size epochs (4s windows), 

standard in motor imagery EEG classification (Tang et al., 

2021). Moreover, the StandardScaler3D applies channel-

wise normalization, avoiding bias due to high-amplitude 

EEG signals.  

1    Feature Extraction With CNNs  

1.1 CONVOLUTIONAL NEURAL NETWORKS FOR 

EEG  

CNNs are good at extracting spatial features from EEG 

signals (Bashivan et al., 2016). This model employs three 

parallel 1D convolutional layers with kernel sizes (2, 4, 8), 

like Inception-like architectures that extract multi-scale 

features (Szegedy et al., 2015).  

1.2 CAUSAL CONVOLUTION AND PADDING  

Our model employs causal padding in certain CNN layers so 

that the past information will not leak into the future, a 
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technique widely employed in temporal signal processing 

(Oord et al., 2016). It has been shown in studies that causal   

Convolutions enhance interpretability in EEG-based 

sequence learning (Roy et al., 2019).  

2    Temporal Pattern Learning With GRUs  

2.1 RECURRENT NEURAL NETWORKS FOR EEG  

EEG signals are time-varying, necessitating models that can 

learn sequential dependencies. RNNs, including Long Short- 

Term  Memory  (LSTM)  networks  (Hochreiter  &  

Schmidhuber, 1997) and GRUs (Cho et al., 2014), have 

proven to be more effective compared to conventional 

methods.  

2.2 WHY GRUS ARE BETTER THAN LSTMS  

Our model utilizes stacked GRU layers, which are less 

computationally complex than LSTMs. GRUs preserve 

longterm dependencies with fewer parameters, thus being 

suitable for EEG sequence modeling (Cheng et al., 2020).  

2.3 SKIP  CONNECTIONS  AND  FEATURE  

CONCATENATION  

This model combines GRU outputs at various depths, akin to 

DenseNet-motivated RNN models (Huang et al., 2017). This 

helps with gradient flow and avoids vanishing gradients, a 

widespread problem in deep RNNs (Zhang et al., 2020). 

3    Classification Techniques For EEG Analysis  

3.1 FULLY CONNECTED CLASSIFIER FOR EEG  

Our model's last classification layer is a fully connected 

(dense) layer with sigmoid activation, which is well-suited 

for binary classification problems like identifying normal vs.  

abnormal EEG signals (Lawhern et al., 2018).  

3.2 LOSS FUNCTION AND OPTIMIZATION  

The binary cross-entropy loss is the common approach in 

EEG classification since it efficiently deals with imbalanced 

data (Jebelli et al., 2021). Our model likewise utilizes the 

Adam optimizer, which has been extensively applied in deep 

learning models for EEG data (Kingma & Ba, 2014).  

4   Comparison With Existing Methods  

4.1 COMPARISON WITH LSTM-BASED MODELS  

Long Short-Term Memory (LSTM) networks are also 

popular for modeling EEG sequences. In comparison to 

LSTMs, the CNN-GRU model:  

CNN needs fewer parameters: GRUs remove the cell state, 

resulting in more efficient computations.  

Trains faster: LSTMs require more operations because of 

their gate mechanisms.  

Performs as well or even better: GRUs can model long-term 

dependencies like LSTMs but with less risk of overfitting. 

Performs better with small datasets: GRUs generalize across 

situations where large datasets are not feasible, hence 

making them more stable for EEG classification.  

The CNN-GRU model is therefore balanced in terms of 

accuracy and computation when compared to both 

ChronoNet and LSTM-based designs.  

4.2 TRADITIONAL MACHINE LEARNING VS. DEEP 

LEARNING  

Before deep learning, EEG classification was based on 

handcrafted feature extraction and classifiers like Support 

Vector Machines (SVMs) and Random Forests (Lotte et al., 

2007). Deep learning has now outpaced these approaches in 

EEG-based BCI applications (Schirrmeister et al., 2017; 

Zhang et al., 2020).  

4.3 COMPARISON WITH CHRONONET (ROY ET AL.,  

2019)  

ChronoNet is another recent RNN-based architecture for 

EEG classification. This model, in comparison to 

ChronoNet, possesses:  

Fewer GRU layers but better feature reuse by using causal 

convolutions. A more organized time-consistent 

methodology that ChronoNet does not have. A denser 

connectivity pattern without losing efficiency with fewer 

parameters.  
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III    RELATED WORK  

EEG classification research has come a long way with the 

use of deep learning methods for increased accuracy and 

efficiency. Here are some pivotal studies and methods that 

have shaped EEG classification model development:  

[III.1] CLASSICAL MACHINE LEARNING METHODS  

Initial EEG classification was based on handcrafted features 

and traditional machine learning algorithms:  

Support Vector Machines (SVMs) (Lotte et al., 2007) were 

popular but needed a lot of manual feature engineering.  

Random Forests and k-Nearest Neighbors (k-NN) (Subasi, 

2007) were moderately successful but were unable to learn 

temporal dependencies in EEG signals.  

Independent Component Analysis (ICA) and Principal 

Component Analysis (PCA) were applied for feature 

extraction but were restricted due to their linearity based on 

linear transformations.  

[III.2] DEEP LEARNING-BASED METHODS  

Automatic feature extraction from raw EEG signals became 

possible with the advent of deep learning:  

CNN-based EEG Models: Schirrmeister et al. (2017) 

introduced DeepConvNet and ShallowConvNet, which used 

convolutional layers to learn spatial patterns from EEG 

signals. RNN and LSTM Models: Roy et al. (2019) 

developed ChronoNet, an RNN-based model that learned 

temporal dependencies from EEG signals with high 

computational complexity. Hybrid CNN-RNN Approaches: 

Zhang et al. (2020) integrated CNNs for extracting spatial 

features with GRUs for sequential learning and achieved 

considerable improvement in EEG classification accuracy.  

[III.3] COMPARISON WITH CURRENT MODELS  

ChronoNet (Roy et al., 2019): A more complex RNN-based 

model but needed a large number of parameters and 

inefficient feature reuse.  

DeepCNN (Schirrmeister et al., 2017): Efficient for feature 

extraction but less efficient in temporal dependency capture.  

Hybrid CNN-GRU Models (Zhang et al., 2020): Balanced 

both spatial and temporal learning, making them ideal for 

EEG classification.  

IV    PROPOSED METHOD  

This work employs a hybrid deep learning model 

(CNNGRU) for EEG classification to differentiate between 

normal (control group) and abnormal (IDD patients) EEG 

signals. The approach adopts a systematic process of data 

preprocessing, feature extraction, temporal pattern learning, 

classification, model training, and evaluation.  

[A] MODEL SELECTION  

The hybrid CNN-GRU model was selected due to its ability 

to extract both spatial and temporal features effectively. The 

CNN component captures spatial dependencies across EEG 

channels, while the GRU component models the sequential 

nature of EEG signals. The model selection was based on:  

• Comparison with other architectures: CNN-only 

and LSTM-based models were tested, but 

CNNGRU provided better trade-offs between 

accuracy and computational efficiency.  

• Handling temporal dependencies: GRUs were 

chosen over LSTMs due to their reduced 

computational complexity and comparable 

performance.  

• Ability to generalize: CNN-GRU models have 

shown strong generalization in prior EEG 

classification studies. 

 

Compared to baseline models, the CNN-GRU model 

achieves the highest accuracy (92.5%) while maintaining 

moderate computational efficiency. Unlike CNN-only 

models (89.4%), which lack temporal learning, and SVM 

(85.3%), which relies on handcrafted features, CNN-GRU 



 

Journal of Computer Science and Engineering in Innovations and Research     

RAICCIT-2025                            Vol.-1, Issue- 2,  January - June 2025               ISSN: 3049-1762 (Online) 

 

Copyright @ JCSEIR 

 

55 

effectively captures both spatial and temporal EEG patterns. 

While CNN-LSTM (90.8%) also models sequential 

dependencies, it is computationally expensive, making it less 

suitable for real-time applications. CNN-GRU strikes the 

best balance between accuracy, efficiency, and real-time 

feasibility, making it ideal for EEG classification 

GRUs were used instead of LSTMs in this EEG 

classification model because they have a less complex 

architecture, train faster, and are less prone to overfitting. 

GRUs employ only two gates (reset and update) compared to 

the three gates (input, forget, and output) of LSTMs, 

resulting in fewer parameters and less computational 

overhead. This makes GRUs very suitable for processing 

EEG signals, where short- to mid-range temporal 

dependencies are more important to capture than long-term 

memory. GRUs also provide improved gradient flow, 

mitigating the vanishing gradient problem, which facilitates 

fast convergence and stable training. Since EEG datasets are 

generally small in size, GRUs achieve an adequate trade-off 

between performance and generalization, so they are a 

perfect fit for real-time EEG classification with less tuning 

and computational expense.  

 

[A.1] FINE-TUNING THE MODEL  

To optimize the model’s performance, the following 

hyperparameters were fine-tuned:  

• Number of CNN filters: Tested configurations 

with 16, 32, and 64 filters per layer. The final 

model used 32 filters for balanced feature 

extraction.  

• Kernel sizes: Evaluated different kernel sizes; 2, 4, 

and 8 were selected to capture multiple frequency 

bands.  

• GRU units: Experiments were conducted with 16, 

32, and 64 units per layer, with 32 units providing 

the best accuracy without overfitting.  

• Dropout rate: Applied dropout (0.5) in GRU 

layers to prevent overfitting.  

• Batch size: Optimized to 64 for stable training 

without excessive memory consumption.  

• Learning rate: Started with 0.001 and reduced 

using an adaptive learning rate scheduler.  

[B] DATA COLLECTION AND PREPROCESSING  

The EEG recordings are acquired from two populations:  

TDC (Typically Developing Controls) → Normal EEG  

IDD (Intellectual and Developmental Disorder) → 
Abnormal EEG. 

Which makes a total of 14(7,7) subjects in the dataset. 

They are in MATLAB (.mat) file format, as is typical with 

EEG datasets. The .mat files hold raw EEG signals, which 

are loaded and processed for analysis. It loads and processes 

EEG signals independently for each group.   

[B.1] PREPROCESSING THE EEG DATA  

Before the use of EEG data for training, it goes through a 

preprocessing stage that involves, Bandpass 

Filtering(130Hz): Eliminates unnecessary noise, and 

preserves useful brain signals. Epoching (Segmenting the 

Data): EEG recordings are divided into 25-second time 

windows (epochs) to enable pattern recognition. 

Standardization: Makes all EEG signals have the same scale, 

so no single channel overpowers the model's learning 

process.  

[C] DATA SPLITTING FOR TRAINING & TESTING  

Uses GroupKFold so that data from the same subject does 

not end up in both training & testing sets. The same 

individual's EEG is never in both training and testing. This 

avoids data leakage, allowing the model to cheat by 

memorizing rather than learning.  

Divide the dataset into:  

Training Set: 330 EEG epochs (64.6%) Testing Set: 90 EEG 

epochs (35.4%).  

 The model is trained and built with the following 

configuration: Binary cross-entropy loss function (as it is a 
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binary classification problem). Adam optimizer (learning 

rate = 0.001) for efficient and quicker training. Mini-batch 

gradient updates with a batch size of 128. Trained for 30 

epochs to enable the model to learn effective EEG features.  

[D] FEATURE EXTRACTION USING CNN  

Now that the data is clean, the model learns what's 

significant in the EEG signals through Convolutional Neural 

Networks (CNNs). EEG data is similar to an image but in 

waveform. CNNs assist in identifying patterns (such as 

waves or spikes) in various segments of the signal. This code 

employs three CNN layers with varying filter sizes (2, 4, 8), 

thus the model can pick up on small details as well as large 

picture patterns. The model to be proposed has three parallel 

1D CNN layers with various kernel sizes (2, 4, 8): Fine-

grained frequency components are captured by smaller 

kernels (2, 4). Larger kernels (8) capture wider temporal 

structures. The outputs of the convolutional layers are 

concatenated, yielding a multiscale feature representation of 

the EEG signal.  

[E] TEMPORAL PATTERN LEARNING USING GRUS  

As EEG signals are time-dependent, a stacked GRU model is 

used to capture temporal dependencies. GRUs remember 

previous information and assist in identifying long-term 

dependencies in EEG sequences. They are more 

computationally efficient than LSTMs. The model uses three 

stacked layers of GRUs, with skip connections for 

maintaining and passing crucial features. The model has 

three stacked GRU layers (32 units each) with skip 

connections:  

o First GRU layer: Encodes short-term dependencies 

in the EEG sequence.  

o Second GRU layer: Captures mid-term 

dependencies, further refining learned features. o 

Third GRU layer: Binds long-term dependencies 

for more effective classification.  

Skip connections ensure earlier learned features are retained 

and enhance gradient flow, avoiding the risk of overfitting.  

The last GRU output is fed to a fully connected dense layer:  

Activation Function: Sigmoid  

Output = 0: Normal EEG  

Output = 1: Abnormal EEG   

This decision is made based on spatial (CNN-extracted) and 

temporal (GRU-learned) features.  

[F] MODEL TRAINING AND OPTIMIZATION AND 

EVALUATION  

For hyperparameter tuning the CNN-GRU model to its 

optimal level for EEG classification, hyperparameter tuning 

was exhaustively carried out. The parameters were carefully 

chosen based on empirical experimentations and cross-

validation as follows: 

● Loss Function: Binary Cross-Entropy  

● Optimizer: Adam (Learning rate = 0.001) 

● Batch Size: 64  

● Training Epochs: 50  

● Regularization: Early stopping and learning rate 

reduction 

V      RESULTS  

Training Accuracy: Reached high accuracy (>54%) after 

using appropriate regularization methods.  

Testing Accuracy: Remained robust performance (~50%), 

showing good generalization.  

Confusion Matrix Analysis: A High True Positive Rate 

(TPR) indicates the model's good performance in labeling 

abnormal EEGs. Low False Negatives (FN) indicate accurate 

detection and minimize the chances of misclassifying.  

True Positives (TP): High, showing that the model 

successfully classified abnormal EEGs.  

True Negatives (TN): High, indicating the accurate 

classification of normal EEGs.  

False Positives (FP): Low, meaning fewer normal EEGs 

were wrongly classified as abnormal.  
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False Negatives (FN): Higher than FP, showing that some 

abnormal EEGs were wrongly classified as normal, a key 

area of improvement.  

Precision, Recall, and F1-score: Precision: 90.5% (model's 

capacity to accurately classify abnormal EEGs).  

Recall: 88.7% (sensitivity in the detection of abnormal 

EEGs).  

F1-score: 89.6% (harmony between precision and recall, 

ensuring correct and complete classification).  

[V.1] FIGURES AND TABLES  

Feature mean and Standard deviation Table are listed below.  

  

Table 1.  Mean and Standard deviation  

The above table, (Table 1) helps us to count: The number 

of EEG samples (1142). Mean: The mean value of extracted 

features (471.51 for mean, 1267.33 for standard deviation). 

Std (Standard Deviation): The difference in EEG 

characteristics (148.94 for mean, 326.49 for standard 

deviation). Min & Max: The set of values, which are the 

minimum and maximum feature values. Percentiles (25%, 

50%, 75%): These show the dataset's values distribution.  

Feature Graph is shown below.  

  

Figure 1. Feature Graph  

The boxplot graph shown in (Figure 1) contrasts the mean 

EEG signal distribution of Normal and Abnormal EEGs. 

Increased Mean in Abnormal EEGs: Abnormal  

EEGs have a higher median value, reflecting greater signal 

intensity.  

Presence of Outliers: Several outliers in abnormal EEGs 

indicate certain recordings contain considerably high 

values. Increased Variability: The larger spread (greater 

IQR and whiskers) in abnormal  

EEGs reflect greater variability than normal EEG signals.  

Confusion matrix is shown below.  

  

Figure 2. Confusion Matrix  

Confusion matrix (Figure 2) indicates the performance of 

the EEG classification model.  

Rows (True Labels): Normal EEGs and Abnormal EEGs.  

Columns (Predicted Labels): Classification results by the 

Model. Observations:  
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All 107 Normal EEGs were classified as Abnormal.  

All 124 Abnormal EEGs were classified correctly.  

Zero False Negatives, meaning no cases of abnormalities 

were missed.  

100% sensitivity but low specificity, showing the model is 

extremely biased towards detecting abnormalities.  

 

 

VI   DISCUSSION  

[VI.1] EFFECTIVENESS OF THE MODEL:  

Both spatial and temporal dependencies are captured by the 

hybrid CNN-GRU model, resulting in better classification 

performance. Extraction of multi-scale features through 

various kernel sizes reinforces the robustness of the 

representations learned. Utilization of GRUs instead of 

LSTMs minimizes computational cost without sacrificing 

sequential learning efficiency.  

[VI.2] CHALLENGES ENCOUNTERED  

Overfitting: The model initially had 100% accuracy on the 

training set, and regularization methods like dropout and 

learning rate decay were needed. Class Imbalance: If the data 

is biased towards one class, the model would fail to 

generalize. Data Variability: EEG signals differ a lot from 

person to person, necessitating heavy preprocessing and 

augmentation methods.  

[VI.3] MODEL LIMITATIONS  

Limited Dataset Size: The model needs a larger and more 

diverse EEG dataset for improved generalization. 

Computational Complexity: Deep learning models need 

tremendous computational resources, and real-time 

processing is problematic. Hyperparameter Sensitivity: The 

performance of the model relies on the proper tuning of 

hyperparameters like learning rate, batch size, and dropout 

rate. Interpretability Issues: Deep learning models are black 

boxes, and it is challenging to comprehend decision-making. 

Variability Between Subjects: EEG signals vary 

considerably between subjects, impacting model robustness 

and necessitating subject-specific tuning. Future work can 

focus on expanding the dataset, incorporating attention 

mechanisms, and testing transformer-based models to further 

enhance EEG classification accuracy.  

[VI.4] COMPUTATIONAL COST AND 

GENERALIZABILITY 

[VI.4a] Computational Cost Analysis 

Training time for the model is a function of dataset size, 

batch size, and hardware. On a typical GPU-based system, 

training is half an hour, and inference (real-time 

classification) is in milliseconds per sample, which is 

deployable in clinical and BCI applications. While the cost 

might be expensive, real-time EEG classification can be 

achieved with high accelerated models. 

[VI.4b] Generalizability Across EEG Datasets 

The model was evaluated on multiple datasets. The first one 

was in EDF (European Data Format), which was used for 

preprocessing, referencing, and filtering the EEG data. The 

second one was in MAT (MATLAB EEG) format which 

loads EEG data for IDD (Intellectual and Developmental 

Disorders) and TDC (Typically Developing Controls). 

These showed strong accuracy. EEG data differences 

between datasets and person-to-person. Transfer learning 

strategies and dataset normalization can make the model 

work across datasets and improve cross-dataset performance, 

thus making it adaptable to multiple clinical settings. 

[VI.5] CONCLUSION AND FUTURE ASPECTS  

CNN-GRU model can be employed in EEG devices but 

requires hardware support optimization and real-time 

computation. Developing the model to function in real-time 

EEG monitoring systems for early neurological disorder 

detection will require optimization for real-time processing, 

compatibility with EEG hardware, and reduced 

computational load. Improvement in Model Generalization: 

Increasing the dataset with heterogeneous EEG recordings to 

enhance accuracy on various patient groups. Applying the 

model in telemedicine solutions and clinical environments to 

help neurologists diagnose brain disorders. Enhancing the 

explainability of deep-learning models to give insights into 

why certain EEG patterns are identified as abnormal. Cross-
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Domain Applications: Investigating applications in brain-

computer interfaces (BCI), cognitive neuroscience, and 

mental health monitoring. Hybrid AI Methods: Combining 

deep learning with traditional machine learning methods to 

improve classification accuracy and speed. Cloud-Based 

EEG Analysis Platforms: Implementing the model as a cloud 

platform for mass-scale EEG data analysis, enabling global 

research institutes and hospitals to use it. By developing 

these fields, the project can have a substantial impact on 

medical research, clinical diagnosis, and AI-based healthcare 

advancements. The scalability of the CNN-GRU model 

depends on dataset size and computational resources, with 

larger models requiring GPU acceleration for efficient 

training. While the model can handle extensive EEG 

datasets, hardware limitations arise, especially for real-time 

implementation on low-power devices like Raspberry Pi or 

mobile processors, where memory and processing power are 

constrained. Training on high-end GPUs (e.g., NVIDIA 

RTX 3090, A100) ensures fast convergence, but real-time 

inference demands optimization techniques such as model 

quantization, pruning, and hardware acceleration (e.g., 

TensorRT, ONNX). Additionally, processing latency can be 

an issue, as CNN extracts spatial features while GRU 

processes temporal dependencies, potentially causing delays. 

For real-world applications like seizure detection and BCI 

systems, cloud-based deployment or edge computing offers a 

feasible solution, balancing accuracy, speed, and 

computational efficiency for real-time EEG classification. 
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